Automating question generation and marking of language learning exercises for isiZulu

Nikhil Gilbert and C. Maria Keet

Department of Computer Science, University of Cape Town, South Africa, mkeet@cs.uct.ac.za

CNL'18, Maynooth, Ireland, August 27-28, 2018

Outline

- Motivation
- 2 Design
- 3 Evaluation and discussion
- 4 Conclusions

- Motivation
- 2 Design
- 3 Evaluation and discussion
- 4 Conclusions

Introduction – Language learning

- Exercise books with limited set of questions; practice effect
- Issues with manual marking of homework exercises and tests [Prabitha(2010)]:
 - prone to errors in marking
 - loss of scripts
 - time taken to return the work to students
 - limited options to assess the students' progression in language learning
- For context in South Africa, isiZulu, in addition:
 - thousands of entry-level isiZulu learners
 - few teachers
- Computer-assisted language learning
- May be useful for, a.o.: more exercises, automated marking

Introduction – Language learning

- Exercise books with limited set of questions; practice effect
- Issues with manual marking of homework exercises and tests [Prabitha(2010)]:
 - prone to errors in marking
 - loss of scripts
 - time taken to return the work to students
 - limited options to assess the students' progression in language learning
- For context in South Africa, isiZulu, in addition:
 - thousands of entry-level isiZulu learners
 - few teachers
- Computer-assisted language learning
- May be useful for, a.o.: more exercises, automated marking
- ⇒ How to automate the entry-level exercises and marking isi7ulu?

A few features of isiZulu

- Most populous language in SA, first (home) language of $\pm 23\%$ (≥ 10 million)
- Member of the Bantu language group, spoken by some 300 million people
- Bantu languages have characteristically agglutinating morphology
- System of noun classes, controls the concordance of all words in a sentence

Abafana abancane bazozithenga izincwadi ezinkulu aba-fana aba-ncane ba- zo- zi- thenga izi-ncwadi e-zi-nkulu 2.boy 2.small 2.SUBJ-FUT-10.OBJ-buy 10.book REL-10.big 'The little boys will buy the big books'

Noun classes (simplified)

NC	Prefix	Examples	NC	Prefix	Examples
1	um(u)	umuntu 'human'	9a	i	ivazi 'vase'
2	aba	abantu	(6)	ama	amavazi
1a	u	ugogo 'grandmother'	9	i(N)	indlovu 'elephant'
2a	O	ogogo	10	izi(N)	izindlovu
3a	u	ushizi 'cheese'	11	u(lu)	uphawu 'mark'
(2a)	O	oshizi	(10)	izi(N)	izimphawu
3	um(u)	umfoloko 'fork'	14	ubu	ubuhle 'beauty'
4	imi	imifoloko			
5	i(li)	igama 'name'	15	uku	ukuhamba 'to go'
6	ama	amagama			
7	isi	isilwane 'animal'	17	ku	(locatives)
8	izi	izilwane			

Related works

- Use grammar banks, like transformation-based grammar exercises (e.g., [Gardent and Perez-Beltrachini(2011)])
 - Very limited documented isiZulu grammar

Related works

- Use grammar banks, like transformation-based grammar exercises (e.g., [Gardent and Perez-Beltrachini(2011)])
 - Very limited documented isiZulu grammar
- Corpus-based, POS tagged (e.g., [Sinclair(2004)]);
 - Outdated and out-of domain text [Spiegler et al.(2010)]; very limited other POS tagged text

Related works

- Use grammar banks, like transformation-based grammar exercises (e.g., [Gardent and Perez-Beltrachini(2011)])
 - Very limited documented isiZulu grammar
- Corpus-based, POS tagged (e.g., [Sinclair(2004)]);
 - Outdated and out-of domain text [Spiegler et al.(2010)]; very limited other POS tagged text
- NLG for ontology verbalisation; e.g., [Keet and Khumalo(2017)]
 - Few verbalisation algorithms for basics of grammar (plurals, conjugation, negation)

Outline

- Motivation
- 2 Design
- 3 Evaluation and discussion
- 4 Conclusion

Conclusions

Architecture of the back-end system

Sentence Generator

- Too time consuming to handcraft (very) many sentences
- Basic sentences only, of the patterns <noun> <verb> or <noun> <verb> <noun> only
- Idea: exploit some of the semantics of the noun class system

Sentence Generator

- Too time consuming to handcraft (very) many sentences
- Basic sentences only, of the patterns <noun> <verb> or <noun> <verb> <noun> only
- Idea: exploit some of the semantics of the noun class system
- Noun list (n=231), verb list (n=59); terms typical for language learning; e.g., umfundi 'learner', ikhaya 'home', -enza 'do', -hamba 'go', thenga 'like'
- Two 'chain' lists
 - n ubaba <1a> washa;sula;faka;khuluma
 - n| umzali <1;s> ALL_v;e_dumisa;e_cisha
 - vl washa <t> imoto;umshini;umnyango
 - vl sula <> ifasitela;imoto;ipuleti
 - v khuluma <t> ALL_1; ALL_1a

Reuse of Ontology verbalisation algorithms

- Pluraliser [Byamugisha et al.(2018)] and a new singulariser
 - *u-* / *aba-* (NC1/2) *i(n)-* / *izi(n)-* (NC9/10) *uku-* (NC15)
- Conjugator (subject concord) [Keet and Khumalo(2014)]
 - u- (NC1) in- (NC9) ku- (NC15)
- Positive and negative verbs [Keet and Khumalo(2014)];
 - *u-* / *aka-* (NC1) *i-* / *ayi-* (NC9) *uku-* / *aku-* (NC15), and change final vowel to *-i* for negative

documentation of the algorithms: http://www.meteck.org/files/geni/

Small example of reuse

20: return RESULT

Algorithm 4 (Negation) Verbalisation of negation in an axiom, as disjointness or negated object property (i.e., axioms of type $C \sqsubseteq \neg D$ and $C \sqsubseteq \neg \exists R.D$).

Require: C set of classes, language \mathcal{L} with \sqsubseteq for subsumption and \neg for negation; variables: A axiom, NC_i noun class, $c_1, c_2 \in C$, a_1 term, a_2 letter and n, p are concords, v verb stem; functions: checkNegation(A), $qetNSC(NC_i)$, $qetPNC(NC_i)$.

```
\mathbf{Require:}\ checkNegation(A) == true
```

```
    if negation directly preceded by □ and directly followed by c<sub>2</sub> then

       NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1
                                                                                                               {from known list}
       c'_1 \leftarrow pluralise(c_1, NC'_1)
                                                                            {call algorithm pluralise to generate a plural from o}

 a<sub>1</sub> ← lookup quantitative concord for NC'<sub>1</sub>

                                                                                       {from quantitative concord (QC(all)) list}
5: n \leftarrow getNSC(NC'_1)
                                                                                           \{\text{get negative subject concord for } c'_i\}
6: p \leftarrow getPNC(NC_2)
                                                                                                          \{\text{get pronomial for } c_2\}
7: Result \leftarrow 'a<sub>1</sub> c'<sub>1</sub> np c<sub>2</sub>.'
                                                                                      \{\text{verbalise the disjointness } (a_1 \text{ is QC(all)})\}
8: else if negation in front of OP then
    v' \leftarrow remove final vowel of v
                                                                                  {i.e., obtain the (possibly extended) verb root}
    n \leftarrow getNSC(NC'_1)
                                                                                           \{\text{get negative subject concord for } c_1'\}
       if v' \in \{a, e, i, o, u, \} then
12:
          negv \leftarrow phonoCondNegSc(v', n)
13.
        neqv \leftarrow n + v'
14:
       end if
       Result \leftarrow 'a_1 c'_1 negvi c_2 r_2q_2 dwa.'
                                                                                                           {verbalise the axiom}
                                                                                {negation in front of c_2 and A contains an OP}
17: else
       Result ← 'verbalisation of this class negation is not supported yet.'
19: end if
```

Small example of reuse

20: return RESULT

Algorithm 4 (Negation) Verbalisation of negation in an axiom, as disjointness or negated object property (i.e., axioms of type $C \sqsubseteq \neg D$ and $C \sqsubseteq \neg \exists R.D$).

Require: C set of classes, language \mathcal{L} with \sqsubseteq for subsumption and \neg for negation; variables: A axiom, NC_i noun class, $c_1, c_2 \in C$, a_1 term, a_2 letter and n, p are concords, v verb stem; functions: checkNegation(A), $getNSC(NC_i)$, $getPNC(NC_i)$.

```
Require: checkNegation(A) == true
```

```
    if negation directly preceded by □ and directly followed by c<sub>2</sub> then

       NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1
                                                                                                                 {from known list}
3: c'_1 \leftarrow pluralise(c_1, NC'_1)
                                                                             \{call algorithm pluralise to generate a plural from o\}
       a_1 \leftarrow \text{lookup quantitative concord for } NC'_1
                                                                                         {from quantitative concord (QC(all)) list}
5: n \leftarrow getNSC(NC'_1)
                                                                                            \{\text{get negative subject concord for } c'_1\}
6: p \leftarrow aetPNC(NC_2)
                                                                                                            \{\text{get pronomial for } c_2\}
 7: Result \leftarrow 'a<sub>1</sub> c'<sub>1</sub> np c<sub>2</sub>.'
                                                                                       {verbalise the disjointness (a1 is QC(all))}
 8: else if negation in front of OP then
 9: v' \leftarrow remove final vowel of v
                                                                                   i.e., obtain the (possibly extended) verb root
 D: n \leftarrow qetNSC(NC'_1)
                                                                                            get negative subject concord for c4
      if v' \in \{a, e, i, o, u, \} then
          neav \leftarrow phonoCondNegSc(v', n)
       else
          negv \leftarrow n + v'
       end if
       Result \leftarrow 'a<sub>1</sub> c'<sub>1</sub> neqvi c<sub>2</sub> r<sub>2</sub>q<sub>2</sub>dwa.'
                                                                                                            {verbalise the axiom}
17: else
                                                                                 {negation in front of co and A contains an OP}
       Result ← 'verbalisation of this class negation is not supported yet.'
19: end if
```


Small example of reuse

Algorithm 4 (Negation) Verbalisation of negation in an axiom, as disjointness or negated object property (i.e., axioms of type $C \sqsubseteq \neg D$ and $C \sqsubseteq \neg \exists R.D$).

Require: C set of classes, language L with \sqsubseteq for subsumption and \neg for negation; variables: A axiom, NC_i noun class, $c_1, c_2 \in C$, a_1 term, a_2 letter and n, p are concords, v verb stem; functions: checkNegation(A), $qetNSC(NC_i)$, $qetPNC(NC_i)$.

```
Require: checkNegation(A) == true
```

```
    if negation directly preceded by □ and directly followed by c<sub>2</sub> then

       NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1
                                                                                                               {from known list}
    c'_1 \leftarrow pluralise(c_1, NC'_1)
                                                                            \{call algorithm pluralise to generate a plural from o\}
       a_1 \leftarrow \text{lookup quantitative concord for } NC'_1
                                                                                        {from quantitative concord (QC(all)) list}
5: n \leftarrow getNSC(NC'_1)
                                                                                           \{\text{get negative subject concord for } c'_1\}
6: p \leftarrow getPNC(NC_2)
                                                                                                          \{\text{get pronomial for } c_2\}
 7: Result \leftarrow 'a<sub>1</sub> c'<sub>1</sub> np c<sub>2</sub>.'
                                                                                      {verbalise the disjointness (a1 is QC(all))}
 8: else if negation in front of OP then
 9: v' \leftarrow remove final vowel of v
                                                                                  i.e., obtain the (possibly extended) verb root
 D: n \leftarrow qetNSC(NC'_1)
                                                                                           get negative subject concord for c4
      if v' \in \{a, e, i, o, u, \} then
          negv \leftarrow phonoCondNegSc(v', n) - (aX \mid eX) \rightarrow negscyword
       else
                                                           - (iX \mid oX \mid uX) \rightarrow neascngword
          negv \leftarrow n + v'
       end it
       Result \leftarrow 'a<sub>1</sub> c'<sub>1</sub> neqvi c<sub>2</sub> r<sub>2</sub>q<sub>2</sub>dwa.'
                                                                                                           {verbalise the axiom}
17: else
                                                                                { negation in front of c2 and A contains an OP}
       Result ← 'verbalisation of this class negation is not supported yet.'
19: end if
20: return RESULT
```

Question 'templates'/patterns (the CNL)

- sentence patterns: <noun> <verb> or <noun> <verb>
 <noun>
- <noun> constructed from prefix[SG/PL] + stem
- <verb> constructed from [Negative]Subject Concord + VerbRoot + [Negative]FinalVowel
- takes into account phonological conditioning

Question 'templates'/patterns (the CNL), selection

- 1. Q: <PLSC+VerbRoot+FV>

 - $Q: <\!\!prefixSG + stem\!\!> <\!\!PLSC + VerbRoot + FV\!\!> <\!\!prefixSG + stem\!\!>$
- - A: < prefixPL + stem > < prefixPL + stem > < prefixPL + verbRoot + FV > verb
 - $Q{:}\,{<}\texttt{prefixSG+stem}{>}\,{<}\texttt{SGSC+VerbRoot+FV}{>}\,{<}\texttt{prefixSG+stem}{>}$
 - $A: <\!\!\underline{\text{prefixPL}} + \!\!\! \text{stem} > <\!\!\underline{\text{PLSC}} + \!\!\! \text{VerbRoot} + \!\!\! \text{FV} > <\!\!\underline{\text{prefixPL}} + \!\!\! \text{stem} >$
- - A: < PLNEGSC+VerbRoot+NEGFV>

Question 'templates'/patterns (the CNL), combining components

• May mix and match the 'slots' (not tested); e.g.:

```
\label{eq:Q:prefixSG+stem} $$Q: \leq prefixSG+stem > A: \leq prefixPL + stem > \leq PLNEGSC + VerbRoot + NEGFV > \leq prefixPL + stem > defined by the stem > define
```

- Example:
 umfowethu uwasha inkomishi
 '(my) brother washes the cup'
 abafowethu abawashi izinkomishi
 '(my) brothers do not wash the cups'
- The current system can generate 39501 question sentences and compute their answers (and 60 scrabble general common conversational sentences)

Outline

- Motivation
- 2 Design
- 3 Evaluation and discussion
- 4 Conclusions

Preliminary evaluation

- Evaluation with an oracle (1 person who speaks isiZulu)
- Data analysis with some input from isiZulu linguist

Preliminary evaluation

- Evaluation with an oracle (1 person who speaks isiZulu)
- Data analysis with some input from isiZulu linguist
- Meaningfulness of the sentences and the grammatical correctness
- 30 sentences generated (15 singular, 15 plural), covering each type of template
- weigh each sentence equally, 1 or 0, calculate percentage
- space for comments on each sentence

Preliminary evaluation – Results

- Two-words sentences: 100% semantically meaningful and 96% grammatically correct (ticking a box omission)
- Three-word sentences: 63% semantically meaningful and 58% grammatically correct (at a first pass)
 - Words in the corpus and the ported pluraliser and conjugator

Preliminary evaluation – Results

- Two-words sentences: 100% semantically meaningful and 96% grammatically correct (ticking a box omission)
- Three-word sentences: 63% semantically meaningful and 58% grammatically correct (at a first pass)
- Words in the corpus and the ported pluraliser and conjugator pluraliser:
 e.g., ushukela 'sugar' has no plural (correct in [Byamugisha et al.(2018)])); pluraliser coverage (aba- plural with abe- exception)
 - These issues affected 5 sentences

Preliminary evaluation - Results

- Two-words sentences: 100% semantically meaningful and 96% grammatically correct (ticking a box omission)
- Three-word sentences: 63% semantically meaningful and 58% grammatically correct (at a first pass)
- Words in the corpus and the ported pluraliser and conjugator pluraliser:
 e.g., ushukela 'sugar' has no plural (correct in [Byamugisha et al.(2018)])); pluraliser coverage (aba- plural with abe- exception)

These issues affected 5 sentences

corpus: debatables; e.g. -sheka: exists as is? (defecate, to be scared, or to commit something), or acceptable (or not) colloquial contraction of shiyeka 'stay behind'; udadewenu or udade wenu 'your sister'

These issues affected 7 sentences; not CALL's problem

Preliminary evaluation - Results

- Two-words sentences: 100% semantically meaningful and 96% grammatically correct (ticking a box omission)
- Three-word sentences: 63% semantically meaningful and 58% grammatically correct (at a first pass)
- Words in the corpus and the ported pluraliser and conjugator pluraliser:
 e.g., ushukela 'sugar' has no plural (correct in [Byamugisha et al.(2018)])); pluraliser coverage (aba- plural with abe- exception)

These issues affected 5 sentences

corpus: debatables; e.g. -sheka: exists as is? (defecate, to be scared, or to commit something), or acceptable (or not) colloquial contraction of shiyeka 'stay behind'; udadewenu or udade wenu 'your sister'

These issues affected 7 sentences; not CALL's problem

 Thus, the CNL templates function as intended, the underlying algorithms perform mostly well (and updated), and the word chaining process also works well

Discussion

- NV and NVN sentence structure may looks simple
- e.g. in English negation is a simple: 'does not' or 'do not' regardless who or what the subject is and regardless the morphology of the verb
- yet, in isiZulu: 12 singular NCs + 9 plural NC combinations with singulars + 6 personal pronouns = 27 negative SCs to consider, and then a set of phonological conditioning rules
- Or: range of templates may seem small, but the variability of what can possibly be slotted in is much higher

Discussion

- Our CALL system provides many more exercises than the paper-based versions
- Basic vocabulary used in a versatile way
- Addresses also things like the "practice effect"
- Conducted preliminary experiments with assigning difficulty levels to the exercises (integrated in the system presented) that aims to contribute to assessing the learner's level and progress

Outline

Motivation

- Motivation
- 2 Design
- 3 Evaluation and discussion
- 4 Conclusions

Conclusions

- New CALL exercises, CNL-based
- Small new corpus
- Algorithms to compute the answers that adhere to the specified answer templates
- Modular approach
- 100% semantic accuracy for two-word isiZulu sentences; room for improvement for three-word sentences
- Exercise extensions include the object concord and past tense,
 a larger corpus, and more comprehensive testing

References I

Joan Byamugisha, C. Maria Keet, and Langa Khumalo.

Pluralising nouns in isiZulu and similar languages.

In A. Gelbukh, editor, Proceedings of CICLing 16, volume 9623 of LNCS, pages 271-283. Springer, 2018.

C. Gardent and L. Perez-Beltrachini.

Using FB-LTAG Derivation Trees to Generate Transformation-Based Grammar Exercices.

In *Proc. of TAG+11*, pages 117–125. ACL, 2011. Sep 2012. Paris. France.

C. M. Keet and L. Khumalo.

Toward a knowledge-to-text controlled natural language of isiZulu.

Language Resources and Evaluation, 51(1):131–157, 2017. doi: 10.1007/s10579-016-9340-0.

C. Maria Keet and Langa Khumalo.

Basics for a grammar engine to verbalize logical theories in isiZulu.

In A. Bikakis et al., editors, *Proceedings of the 8th International Web Rule Symposium (RuleML'14)*, volume 8620 of *LNCS*, pages 216–225. Springer, 2014.

August 18-20, 2014, Prague, Czech Republic.

M. Prabitha.

Computer assisted language learning: Benefits and barriers.

Journal of Literature, Culture and Media Studies, 2:59-71, 2010.

References II

Sebastian Spiegler, Andrew van der Spuy, and Peter A. Flach.

Ukwabelana – an open-source morphological zulu corpus.

In Proceedings of the 23rd International Conference on Computational Linguistics (COLING'10), pages 1020–1028. Association for Computational Linguistics, 2010.

Beijing.

Thank you!

Questions?

More details are available at http://www.meteck.org/files/geni/