Generating Natural Language from OWL and RDF Data

Grammar-Based, Statistical and Neural Approaches

Claire Gardent

CNRS/LORIA and Université de Lorraine, Nancy

CNL, August 2018
Maynooth, Ireland
Using NLG to Verbalise a Knowledge Base
Using NLG to query a KB
Using NLG to verbalise RDF Data

Joint Work with

(a) Bikash Gyawali
(b) Shashi Narayan
(c) Laura Perez-Beltrachini
(d) Anastasia Shimorina

Funded by the French ANR Project WebNLG
http://webnlg.loria.fr/pages/index.html
Much information is stored in KB and RDF stores.

User Survey: 72% of Internet users find it frustrating to get irrelevant information when web searching.
Source: www.internetsociety.org/survey
Natural Language Generation makes this data accessible

QUERYING

Quelo: NLG allows the user to query a Knowledge Base in English
Natural Language Generation makes this data accessible

SUMMARISING
Miakt: NLG generates a patient report from an RDF data store.

Fig. 1. The MIAKT Generator
Natural Language Generation makes this data accessible

VERBALISING

SWAT: NLG translates the content of an OWL Knowledge Base into English

<table>
<thead>
<tr>
<th>Class label</th>
<th>OWL axioms (Manchester syntax)</th>
<th>Natural Language Definition Extracted</th>
</tr>
</thead>
<tbody>
<tr>
<td>22rv1</td>
<td>bearer_of some 'prostate carcinoma' derives_from some 'Homo sapiens' derives_from some prostate</td>
<td>A 22rv1 is a cell line. A 22rv1 is all of the following: something that is bearer of a prostate carcinoma, something that derives from a homo sapiens, and something that derives from a prostate.</td>
</tr>
<tr>
<td>HeLa</td>
<td>bearer_of some 'cervical carcinoma' derives_from some 'Homo sapiens' derives_from some cervix derives_from some 'epithelial cell'</td>
<td>A HeLa is a cell line. A HeLa is all of the following: something that is bearer of a cervical carcinoma, something that derives from a homo sapiens, something that derives from an epithelial cell, and something that derives from a cervix.</td>
</tr>
<tr>
<td>Ara-C-resistant murine leukemia</td>
<td>has_subclass b117h* has_subclass b140h*</td>
<td>A ara c resistant murine leukemia is a cell line. A b117h, and a b140h are kinds of ara c resistant murine leukemias.</td>
</tr>
<tr>
<td>GM18507</td>
<td>derives_from some 'Homo sapiens' derives_from some lymphoblast has_quality some male</td>
<td>A gm18507 is all of the following: something that has as quality a male, something that derives from a homo sapiens, and something that derives from a lymphoblast.</td>
</tr>
</tbody>
</table>
Outline

1. Using NLG to Verbalise a Knowledge Base
 - The KBGen Challenge
 - Grammar-Based NLG

2. Using NLG to query a KB
 - The Quelo NL Interface
 - Statistical NLG

3. Using NLG to verbalise RDF Data
 - The WebNLG Challenge
 - Neural NLG
1. **Using NLG to Verbalise a Knowledge Base**
 - The KBGen Challenge
 - Grammar-Based NLG

2. **Using NLG to query a KB**
 - The Quelo NL Interface
 - Statistical NLG

3. **Using NLG to verbalise RDF Data**
 - The WebNLG Challenge
 - Neural NLG
Verbalising a Knowledge Base

KBGen 2012: an international shared task

Given a set of relations selected from the AURA knowledge base, generate a sentence that is grammatical and fluent in English.

\[\text{The rate of absorption of a central vacuole is directly proportional to the size of the vacuole.} \]
The KBGen Shared Task

Small Training Corpus: 207 training instances (data/text pairs)

3 Participants:

- UDEL: Hand Written Rule Based System (U. Delaware)
- IMS: Statistical System using a probabilistic grammar induced from the training data (U. Stuttgart)
- LOR-KBGEN: Grammar induced from the training data (Lorraine U.)
LOR-KBGen: A Grammar-Based Approach

A Tree Adjoining Grammar (TAG) is automatically induced from the training corpus.

Each grammar rule

- captures a semantically coherent unit
 Semantic Principle
- groups syntactic functors with their dependents
 Extended Domain of Locality

B. Gyawali and C. Gardent
Surface Realisation from Knowledge-Bases.
ACL 2014. Baltimore, USA.
Grammar-Based Generation
Grammar-Based Generation

NP^A

The train

train(A)

S

NP^C

V[agr:3sg]

VP^B

departs

departure(B,C)

VP^D

PP

P

at

10am
tenAM(D)
Input data: \textit{train(t), departure(e, t), tenAM(e)}
Grammar-Based Generation

Input data: \(\text{train}(t), \text{departure}(e,t), \text{tenAM}(e) \)
Grammar-Based Generation

NP
 | The train
train(t)

VP
 | departs
 | departure(e,t)

VP
 | V[agr:3sg]

S

PP
 | at
 | 10am
tenAM(e)

NP

Grammar-Based Generation

The KBGen Challenge
Grammar-Based NLG

Generating Natural Language from OWL

Claire Gardent
Grammar-Based Generation

The train departs at 10am
Separating Grammar from Lexicon

Since each tree is lexicalised, the resulting grammar can be very large. In practice, we therefore...
Separating Grammar from Lexicon

Since each tree is lexicalised, the resulting grammar can be very large. In practice, we therefore

- abstract over lexical items in the grammar
Separating Grammar from Lexicon

Since each tree is lexicalised, the resulting grammar can be very large. In practice, we therefore

- abstract over lexical items in the grammar
- use a lexicon to determine which grammar tree is lexicalised/anchored by which lexical items
Separating Grammar from Lexicon

S

NP\downarrow^C \quad VP^B

V

departs

\textit{departure}(B,C)
Separating Grammar from Lexicon

S

NP_C

VP_B

V

departs

departure(B,C)
Separating Grammar from Lexicon

\[
S \rightarrow NP^C \rightarrow V \rightarrow V\downarrow \Rightarrow departure(B,C) \\
S \rightarrow NP^C \rightarrow V \rightarrow V\downarrow \diamond \rightarrow R(B,C)
\]
Separating Grammar from Lexicon

Semantics: \textit{departure}
Tree: n\times 0V
Syntax: CanonicalSubject
Anchor: \textit{departs}

\textit{departure}(B, C)

Semantics: \textit{arrival}
Tree: n\times 0V
Syntax: CanonicalSubject
Anchor: \textit{arrives}

\(R(B, C)\)
Inducing a Grammar from the KBGen Data

For each (data,sentence) pair in the input:

- Parse and Align semantic variables with words
- Project variables up the parse tree
- Extract subtrees (create a grammar)
- Split trees (generalise)
Example KBGen Input

Data
- Release-Of-Calcium(RoC)
- Gated-Channel(GC)
- Particle-In-Motion(PM)
- Endoplasmic-Reticulum(ER)
- agent(RoC, GC)
- object(RoC, PM)
- base(RoC, ER)
- has-function(GC, RoC)

Sentence
The function of a gated channel is to release particles from the endoplasmic reticulum
Step 1: Parsing and Variable/Word Alignment

- gated_channel(GC)
- release_of_calcium(RoC)
- particles(P)
- reticulum(R)
Step 2: Variable Projection

gated_channel(GC)
release_of_calcium(RoC)
particles(P)
reticulum(R)
Step 3: Tree Extraction (Entities)

- **gated_channel(GC)**
 - *a* gated channel
 - $\text{NP}[^{idx=GC}]$
- **particles(P)**
 - particles
 - $\text{NP}[^{idx=P}]$
- **reticulum(R)**
 - the reticulum
 - $\text{NP}[^{idx=R}]$
Step 3: Tree Extraction (Events)

```
Release_Of_Calcium(RoC)
  object(RoC,P)
  base(RoC,R)
  agent(RoC,GC)
  has_function(GC,RoC)
```
Step 4: Grammar Expansion

We further extract from each Event tree, subtrees corresponding to Subject-Verb-Object structure and optional modifiers.

```
S_{E_3}
  NP
  PP
  NP
  DT   NN   IN   NP_{C}
  the  fn   of
V_{E_3}^P
  E_{E_2}^P
  NP
  TO
  VB
  NP_{A}
  IN
  NP_{B}
  from
```

`release(E)` `object(E,A)`
`agent(E,C)` `has-function(C,E)`
`base(E,B)`
Step 4: Splitting Trees

The function of C is to release A from B

The function of C is to release A

Claire Gardent

Generating Natural Language from OWL
Step 4: Splitting Trees

The function of C is to release A from B

The function of C is to release A
Step 4: Splitting Trees

The function of C is to release A from B
The function of C is to release A
The function of C is to release A to B
Evaluation and Results

- 72 inputs from KBGEN
- Automatic Evaluation: BLEU
- Human-Based Evaluation
 - 12 participants were asked to rate sentences along three dimensions:
 - **fluency**: Is the text easy to read?
 - **grammaticality**: Is the text grammatical?
 - **adequacy**: Does the meaning conveyed by the generated sentence correspond to the meaning conveyed by the reference sentence?
 - Online evaluation (LG-Eval toolkit)
 - Subjects used a sliding scale (1 to 5)
 - Latin Square Experimental Design was used to ensure that each evaluator sees the same number of output from each system and for each test set item.
Results

![Bar chart showing BLEU scores for UDEL, LOR-KBGen, and IMS.]

![Bar chart showing human evaluation scores for Fluency, Grammaticality, and Meaning for UDEL, LOR-KBGen, and IMS.]
Conclusion

Linguistically guided grammar induction:

- permits a fully automated approach (unlike the UDEL system)
- yields output sentences whose quality is close to those produced by a hand written system (unlike the IMS system)
1. Using NLG to Verbalise a Knowledge Base
 - The KBGen Challenge
 - Grammar-Based NLG

2. Using NLG to query a KB
 - The Quelo NL Interface
 - Statistical NLG

3. Using NLG to verbalise RDF Data
 - The WebNLG Challenge
 - Neural NLG
Using NLG to query a KB

Interactive refinement of the user query

- Possible (consistent with KB) extensions of the current user query are computed by an automated reasoner \Rightarrow Set of DL formulae (F)
- Each formal extension ($f \in F$) is then verbalised using NLG
- N.B. The user may revise (substitute, delete, add) the current query

L. Perez-Beltrachini and C. Gardent
Incremental Query Generation

C. Gardent and L. Perez-Beltrachini
A Statistical, Grammar-Based Approach to Micro-Planning
A Statistical Grammar-Based Approach

Input = KB Query

Professor ⊓ Researcher ⊓ ∃teach.LogicCourse
⊓ ∃worksAt.AlicanteUniversity

I am looking for a professor who is a researcher and teaches a course on logic.
He should work for Alicante University.

Microplanning Task: Segment, lexicalise, aggregate and realise
A Statistical Grammar-Based Approach

The grammar

- Enforces grammaticality
- Accounts for language variability (paraphrasing)

The Statistical Module (Hypertagger)

- Enforces microplanning choices (fluency)
- Enhances efficiency (speed)
The Generation Algorithm

- **Lexical Selection**: retrieves TAG trees whose semantic subsumes the input and which are compatible with the hypertagger decisions

- **Hypertagging**: Selects the n-best sequences of grammar rules (TAG trees) given the input semantics

- **Surface Realisation**: Combines TAG trees to produce Sentences
Grammar and Lexicon

The lexicon

- relates KB Symbols, Natural Language Expressions and Syntax (Grammar rules). It is domain specific.
- is acquired automatically

The grammar

- specifies the various syntactic realisations of words. It is generic.
- is a small, manually specified Tree Adjoining Grammar
Automatic Lexicon Induction

The lexicon is automatically derived from KB symbols (Trevisan 2010)

Step 1: Tokenize and PoS Tag

runs\text{on} \rightarrow \text{runs/VBD on/IN}

Step 2: The result sequence is mapped to one or more Lexical Entries

runs/VBD on/IN \rightarrow

<table>
<thead>
<tr>
<th>Semantics</th>
<th>\textit{runsOn}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>\textit{nx0Vpnx1}</td>
</tr>
<tr>
<td>Anchor</td>
<td>should run</td>
</tr>
<tr>
<td>Co-Anchor</td>
<td>P \rightarrow on</td>
</tr>
</tbody>
</table>
Generic Grammar

A small (100 trees), hand-written generic grammar models subcategorisation and syntactic variation.

Valency/Subcategorisation Variations

NP₀ should generate NP₁

NP₀ should run on NP₁

NP₀ should be equipped with NP₁

NP₀ should be the equipment of NP₁

NP₀ should have access to NP₁

NP₀ should be relevant to NP₁

NP₀ should be an N₁ product

NP₀ with NP₁

nx0VVVnpx1 Canonical

nx0VVpnx1 Canonical

nx0VVVpnx1 Canonical

nx0VVDNpnx1 Canonical

nx0VVNpnx1 Canonical

nx0VVApnx1 Canonical

nx0VVDNnx1 Canonical

betanx0Pnx1 Canonical
Generic Grammar

Syntactic Variations

NP₀ should be equipped with NP₁
and NP₀ should be equipped with NP₁
NP₀ which should be equipped with NP₁
NP₀ (...) and which should be equipped with NP₁
NP₀ (...), which should be equipped with NP₁
NP₀ equipped with NP₁
NP₀ (...) and equipped with NP₁
NP₀ (...), equipped with NP₁
NP₁ with which NP₀ should be equipped
NP₀ (equipped with X) and with NP₁
NP₀ (equipped with X), with NP₁

Canonical
S-Coordination
SubjRel
SubjRelPU
SubjRelPU
PpartOrGerund
SharedSubj
SharedSubj
PObjRel
Ellipsis
Ellipsis

A small (100 trees), hand-written generic grammar models subcategorisation and syntactic variation.
Accounting for Syntactic Variations (Lexical Selection)

For a given KB symbol, the grammar models multiple syntactic realisations of that symbol

I am looking for a car dealer located in a city who should sell cars. The car should run on diesel.
The **hypertagger** prunes the initial search space and favours Tree/Syntactic Classes sequences which yield fluent sentences.

CarDealer ⊓ ∃locatedIn.City ⊓ ∃sell.Car ⊓ ∃runOn.Diesel

I am looking for a car dealer located in a city and who should sell a car. The car should run on diesel.

I am looking for a car dealer. The car dealer should be located in a city. The car dealer should sell a car. The car should run on diesel.
Making Choices (Hypertagging)

CRF Hypertagging Model

We learn a linear-chain CRF model to predict the mapping between observed input features and hidden syntactic labels $y = \{y_1, \ldots, y_L\}$.

$$P(y \mid x) = \frac{1}{Z(x)} \prod_{l=1}^{L} \exp \sum_{k=1}^{K} \theta_k \Phi_k(y_{l-1}, x)$$ \hspace{1cm} (1)

The hypertagger finds the optimal hypertag sequence y^* for a given input semantics x:

$$y^* = \arg \max_y P(y \mid x)$$
Data

Training Data for the CRF

- 206 training instances = (KB query, tree sequence) pairs
- From 11 ontologies (Domain Independent)
- Input Length (min:2, max:19, avg: 7.44)
- CRF trained and tested using 10 fold cross validation

Features

- KB Symbol: Shape and content (words) of relation names (unigram and bigrams)
- Lexical features: word overlap between KB symbols, presence/absence of prepositions, etc.
- Entity Chaining Features: distribution of discourse entities in the input query
- Structural features: length of the input, number of predications over the same entity ...
Experimental Setup

Grammar and Lexicon

- Grammar: 69 trees, 10 syntactic classes
- Lexicon: 13 KB, 10K entries, 1296 concepts and elations, average lexical ambiguity: 7.73.

Evaluation Metrics

- Hypertagging Accuracy
- Coverage and Speed
- Output quality (Human Evaluation)
- Qualitative Analysis (Microplanning)

Comparison Models

- Template-Based Model
- Symbolic Grammar-Based Model
Results: Hypertagging Accuracy

- **Token Accuracy**
 - Trees
 - Syntactic Classes

- **Sequence Accuracy**
 - Trees
 - Syntactic Classes

The graphs show the accuracy of hypertagging for different quantities (One, Five, Ten) and syntactic classes. The accuracy values are presented on a scale from 0 to 100.
Results: Coverage

Claire Gardent

Generating Natural Language from OWL
Results: Speed

The chart shows the time (in ms) taken for different numbers of trees and syntactic classes. The y-axis represents time in milliseconds, ranging from 0 to 2,000. The x-axis represents the number of items, with categories for One, Five, and Ten.

- For One item:
 - Trees: ~0 ms
 - Syntactic Classes: ~700 ms

- For Five items:
 - Trees: ~0 ms
 - Syntactic Classes: ~1,200 ms

- For Ten items:
 - Trees: ~0 ms
 - Syntactic Classes: ~2,000 ms

The chart indicates that the time taken for syntactic classes is significantly higher than for trees, regardless of the number of items.
Results: Output quality

Human Evaluation

- 48 input queries
- from 13 knowledge bases (2 not used in training corpus)
- 24 raters
- Online evaluation
- Sliding ruler
- Scale 0-50
- Latin Square design
Results: Output quality

![Bar chart showing human scores for clarity and fluency across different methods: Template, Hybrid, Symbolic, Hybrid.](chart)

- **Template**
 - Clarity: 15
 - Fluency: 5

- **Hybrid**
 - Clarity: 10
 - Fluency: 10

- **Symbolic**
 - Clarity: 5
 - Fluency: 5

<table>
<thead>
<tr>
<th>Method</th>
<th>Clarity</th>
<th>Fluency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Hybrid</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Symbolic</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Claire Gardent

Generating Natural Language from OWL
Results: Output quality (BLEU Scores)

- Templates
- Symbolic
- Hybrid

<table>
<thead>
<tr>
<th>BLEU Score</th>
<th>ALL</th>
<th>Generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Templates</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Symbolic</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Hybrid</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Claire Gardent
Generating Natural Language from OWL
Example Output: Sentence Segmentation

3 relations, 4 concepts: 1 sentence

I am looking for a used car whose color should be white, which should be located in a France and whose model should be a toyota 4 runner.

4 relations, 5 concepts: 2 sentences

I am looking for a new car whose exterior color should be beige and whose body style should be a utility vehicle. The new car should run on a natural gas and should be located in a country.

3 relations, 5 concepts: 2 sentences

I am looking for a new car whose body style should be a utility vehicle, an off road. The new car should run on a natural gas and should be located in a country.
Example Output: Syntactic Variation

I am looking for a car dealer located in a country and who should sell a car whose make should be a toyota. The car should run on a fuel and should be equipped with a manual gear transmission system. (Participial)

I am looking for a car dealer who sells a car whose model is a toyota. It should be located in a country. (Sentence with Pronominal Subject)

I am looking for a new car, an off road whose body style should be a utility vehicle. The new car should run on a natural gas and should be located in a country. (Coordinated VP)

I am looking for a car produced by a car make. The car make should be the make of a toyota. The car make should be located in a city and should produce a land rover freelander. (Canonical Declarative Sentence)
Example Output: Aggregation

VP Coordination

NewCar (...) □ ∃ runOn.NaturalGas □ ∃ locatedInCountry.Country

I am looking for a new car (...). This new car (should run on natural gas and should be located in a country)\(_{VP}\).

Relative Clause Coordination

CommunicationDevice □ ∃ assistsWith.Understanding
□ ∃ assistsWith.HearingDisability

I am looking for a communication device (which should assist with a understanding and which should assist with a hearing disability)\(_{\text{RelCl}}\).
Example Output: Aggregation

NP Coordination

CarDealer ⊓ ∃sell.CrashCar ⊓ ∃sell.NewCar

I am looking for a car dealer who should sell (a crash car and a new car)\textsubscript{NP}.

N-Ary NP Coordination

Car ⊓ ∃equippedWith.ManualGearTransmission
⊓ ∃equippedWith.AirBagSystem

I am looking for a car equipped with (a manual gear transmission system, an alarm system, a navigation system and an air bag system)\textsubscript{NP}.
Summary

Ambiguous Grammar = High Expressivity, Large Search Space

Hypertagging = Making Choices
Using NLG to Verbalise a Knowledge Base

- The KBGen Challenge
- Grammar-Based NLG

Using NLG to query a KB

- The Quelo NL Interface
- Statistical NLG

Using NLG to verbalise RDF Data

- The WebNLG Challenge
- Neural NLG
WebNLG: Goals

[NLG]
Provide a benchmark on which to train, evaluate and compare microplanners for data-to-text generation.

[Semantic Web]
Train, evaluate and compare verbalisers for RDF Data.
WebNLG: A Microplanning Task

Data ⇒ Text

(John_E_Blaha birthDate 1942_08_26)
(John_E_Blaha birthPlace San_Antonio)
(John_E_Blaha occupation Fighter_pilot)

John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter pilot

- Generating Referring Expressions: Describing entities
- Lexicalisation: Choosing lexical items
- Surface Realisation: Choosing syntactic structures
- Aggregation: Avoiding repetition
- Sentence segmentation: Segmenting the content into sentence size chunks
Creating the WebNLG Dataset

- RDF KB (DBPedia) → Content Selection → Data
- Text produced by crowdworkers

<table>
<thead>
<tr>
<th></th>
<th>WebNLG</th>
</tr>
</thead>
<tbody>
<tr>
<td># data-text pairs</td>
<td>40,049</td>
</tr>
<tr>
<td># distinct inputs</td>
<td>15,095</td>
</tr>
<tr>
<td># DBPedia Categories</td>
<td>15</td>
</tr>
</tbody>
</table>

Laura Perez-Beltrachini, Rania Mohammed Sayed and Claire Gardent
Building RDF Content for Data-to-Text Generation
COLING, 2016.

Claire Gardent, Anastasia Shimorina, Shashi Narayan and Laura Perez-Beltrachini
Creating Training Corpora for NLG Micro-Planning
ACL, 2017.
Training and Testing Data

- Train/Dev/Test split: 80/10/10
- 10 seen categories: Astronaut, University, Monument, Building, ComicsCharacter, Food, Airport, SportsTeam, City and WrittenWork
- 5 unseen categories: Athlete, Artist, MeanOfTransportation, CelestialBody, Politician

<table>
<thead>
<tr>
<th></th>
<th>Train+Dev</th>
<th>Test Seen</th>
<th>Test Unseen</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>7,812</td>
<td>971</td>
<td>891</td>
<td>9,674</td>
</tr>
<tr>
<td>Data/text pairs</td>
<td>20,370</td>
<td>2,495</td>
<td>2,433</td>
<td>25,298</td>
</tr>
</tbody>
</table>
The Participants

61 downloads, 6 participants, 8 systems

3 Pipeline Systems
Tilb-Pipeline, UIT-VNU and UPF-FORGe

1 SMT-Based System
Tilb-SMT

5 Neural-Based Systems
ADAPT, Melbourne, PKUWriter, Tilb-NMT and Baseline
Pipeline Systems

<table>
<thead>
<tr>
<th></th>
<th>Order</th>
<th>Aggr.</th>
<th>Templ.</th>
<th>REG</th>
<th>Gr.</th>
<th>re-ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILB-Pipeline</td>
<td>+</td>
<td>-</td>
<td>Induced</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>UIT-VNU</td>
<td>-</td>
<td>-</td>
<td>Induced</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UPF-FORGe</td>
<td>+</td>
<td>+</td>
<td>Manual</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Seq2seq Systems

<table>
<thead>
<tr>
<th></th>
<th>Pre-processing</th>
<th>Word Repr</th>
<th>Add. Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILB-NMT</td>
<td>Delex</td>
<td></td>
<td>REG Module Rerank</td>
</tr>
<tr>
<td>PKUWriter</td>
<td>Delex and</td>
<td>Glove vectors</td>
<td></td>
</tr>
<tr>
<td>Melbourne</td>
<td>Sem Typing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADAPT</td>
<td>Tokenize RDF</td>
<td>Subwords</td>
<td></td>
</tr>
</tbody>
</table>
Global Results

BLEU

<table>
<thead>
<tr>
<th>System</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melbourne</td>
<td>45.13</td>
</tr>
<tr>
<td>Tilb-SMT</td>
<td>44.28</td>
</tr>
<tr>
<td>PKUWriter</td>
<td>39.88</td>
</tr>
<tr>
<td>UPF-FORGe</td>
<td>38.65</td>
</tr>
<tr>
<td>Tilb-Pipeline</td>
<td>35.29</td>
</tr>
<tr>
<td>Tilb-NMT</td>
<td>34.60</td>
</tr>
<tr>
<td>Baseline</td>
<td>33.24</td>
</tr>
<tr>
<td>ADAPT</td>
<td>31.06</td>
</tr>
<tr>
<td>UIT-VNU</td>
<td>7.07</td>
</tr>
</tbody>
</table>

METEOR

<table>
<thead>
<tr>
<th>System</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPF-FORGe</td>
<td>0.39</td>
</tr>
<tr>
<td>Tilb-SMT</td>
<td>0.38</td>
</tr>
<tr>
<td>Melbourne</td>
<td>0.37</td>
</tr>
<tr>
<td>Tilb-NMT</td>
<td>0.34</td>
</tr>
<tr>
<td>ADAPT</td>
<td>0.31</td>
</tr>
<tr>
<td>PKUWriter</td>
<td>0.31</td>
</tr>
<tr>
<td>Tilb-Pipeline</td>
<td>0.30</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.23</td>
</tr>
<tr>
<td>UIT-VNU</td>
<td>0.09</td>
</tr>
</tbody>
</table>

TER

<table>
<thead>
<tr>
<th>System</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melbourne</td>
<td>0.47</td>
</tr>
<tr>
<td>Tilb-SMT</td>
<td>0.53</td>
</tr>
<tr>
<td>PKUWriter</td>
<td>0.55</td>
</tr>
<tr>
<td>UPF-FORGe</td>
<td>0.55</td>
</tr>
<tr>
<td>Tilb-Pipeline</td>
<td>0.56</td>
</tr>
<tr>
<td>Tilb-NMT</td>
<td>0.60</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.61</td>
</tr>
<tr>
<td>UIT-VNU</td>
<td>0.82</td>
</tr>
<tr>
<td>ADAPT</td>
<td>0.84</td>
</tr>
</tbody>
</table>

- 6 systems above the baseline (4 well above it)

- **Neural NLG**
 - Glove vectors and semantic typing of entities help (Melbourne)
 - Relexicalisation works better than subwords (ADAPT)

Claire Gardent

Generating Natural Language from OWL
Results for Seen Categories

<table>
<thead>
<tr>
<th>BLEU</th>
<th>METEOR</th>
<th>TER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADAPT</td>
<td>MELBOURNE</td>
</tr>
<tr>
<td></td>
<td>TILB-SMT</td>
<td>TILB-SMT</td>
</tr>
<tr>
<td></td>
<td>BASELINE</td>
<td>UPF-FORGE</td>
</tr>
<tr>
<td></td>
<td>PKUWriter</td>
<td>TILB-NMT</td>
</tr>
<tr>
<td></td>
<td>TILB-Pipeline</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>UPF-FORGE</td>
<td>TILB-NMT</td>
</tr>
<tr>
<td></td>
<td>UIT-VNU</td>
<td>BASELINE</td>
</tr>
</tbody>
</table>

		MELBOURNE	0.40
		BASELINE	0.44
		PKUWriter	0.45
		TILB-SMT	0.47
		TILB-Pipeline	0.48
		TILB-NMT	0.51
		UPF-FORGE	0.55
		UIT-VNU	0.78

- Neural and SMT systems are better are “reproducing” seen data
- Rule based systems (UPF-FORGE, TILB-Pipeline) seems to produce text that is more different from references than learned systems (higher METEOR and TER)
Results on Unseen Categories

<table>
<thead>
<tr>
<th></th>
<th>BLEU</th>
<th>METEOR</th>
<th>TER</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPF-FORGe</td>
<td>35.70</td>
<td>0.37</td>
<td>0.55</td>
</tr>
<tr>
<td>Melbourne</td>
<td>33.27</td>
<td>0.33</td>
<td>0.55</td>
</tr>
<tr>
<td>Tilb-SMT</td>
<td>29.88</td>
<td>0.31</td>
<td>0.61</td>
</tr>
<tr>
<td>PKUWriter</td>
<td>25.36</td>
<td>0.24</td>
<td>0.65</td>
</tr>
<tr>
<td>Tilb-NMT</td>
<td>25.12</td>
<td>0.21</td>
<td>0.67</td>
</tr>
<tr>
<td>Tilb-Pipeline</td>
<td>20.65</td>
<td>0.19</td>
<td>0.72</td>
</tr>
<tr>
<td>ADAPT</td>
<td>10.53</td>
<td>0.07</td>
<td>0.80</td>
</tr>
<tr>
<td>Baseline</td>
<td>06.13</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>UIT-VNU</td>
<td>0.11</td>
<td></td>
<td>0.87</td>
</tr>
</tbody>
</table>

- **UPF-FORGe** performs well on unseen data and much better than most neural systems.
And also

NLG

- Bayu Distiawan Trisedy, Jianzhong Qi, Rui Zhang and Wei Wang
 GTR-LSTM: A Triple Encoder for Sentence Generation from RDF Data.
 ACL, 2018.
- Emiel Krahmer, Thiago Castro Ferreira, Sander Wubben, Ákos Kádár and Diego Moussallem
 NeuralREG: An end-to-end approach to referring expression generation.
 ACL, 2018.
- Emilie Colin and Claire Gardent.
 Generating Syntactic Paraphrases.
 EMNLP, 2018.

Sentence Simplification

- Shashi Narayan, Claire Gardent, Shay Cohen and Anastasia Shimorina
 Split and Rephase
- Roee Aharoni and Yoav Goldberg
 Split and Rephrase: Better Evaluation and a Stronger Baseline
 ACL, 2018.

Relation Extraction

- Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu and Jun Zhao
 Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism
 ACL, 2018.
What next?

- Better NLG models
- Other text types and communication goals
- Multilingual Generation
THANKS!