
Responsive and Flexible CNL Authoring
with Zipper-based Transformations

Sébastien Ferré
Team SemLIS, Data and Knowledge Management, IRISA/Univ. Rennes 1

Controlled Natural Languages (CNL)
27 August 2018, Maynooth, Ireland

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 1 / 24

Overview

1 The FL-NL Language Gap

2 Principles of the N<A>F Design Pattern

3 Illustration on a Core RDF Query Language

4 Application to 3 Semantic Web Tasks

5 Conclusion

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 2 / 24

The FL-NL Language Gap

The Gap between Formal Languages and Natural
Languages

Natural

Language

(NL)

Formal

Language

(FL)

User Machine

Humans speak English, French, Chinese, ...
Natural Languages (NL)

Machines speak RDF, OWL, SPARQL, ...
Formal Languages (FL)

Only a few humans speak both...
... so we need bridges over the gap

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 3 / 24

The FL-NL Language Gap

The Problem of Adequacy
Adequacy = expressivity + safeness

an essential property of language bridges
expressivity (∼recall): proportion of FL sentences reachable
through the bridge
safeness (∼precision): proportion of paths on the bridge leading
to correct FL sentences

NL continent FL archipelago

unreachable FL fragments

NL sentences with no FL counterpart

bridge

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 4 / 24

The FL-NL Language Gap

Different Kinds of Bridges
Different approaches have been explored to cross the gap for search:

Question Answering (QA): “unsafe full-way bridge”
I users express questions in spontaneous NL
I systems often fail to understand the question or cannot answer it
I low coverage of target FL

Controlled Natural Languages (CNL): “safe half-way bridge”
I wide coverage of target FL
I users must use restricted grammar and lexicon
I systems can help write well-formed questions (autocompletion)

Query Builders (QB): “safe and assisted climbing”
I users still have to build formal queries
I systems help build well-formed queries

They offer different trade-offs between expressivity (FL coverage),
safeness (reliability), and readability (closeness to NL).

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 5 / 24

The FL-NL Language Gap

Different Kinds of Bridges
Different approaches have been explored to cross the gap for search:

Question Answering (QA): “unsafe full-way bridge”
I users express questions in spontaneous NL
I systems often fail to understand the question or cannot answer it
I low coverage of target FL

Controlled Natural Languages (CNL): “safe half-way bridge”
I wide coverage of target FL
I users must use restricted grammar and lexicon
I systems can help write well-formed questions (autocompletion)

Query Builders (QB): “safe and assisted climbing”
I users still have to build formal queries
I systems help build well-formed queries

They offer different trade-offs between expressivity (FL coverage),
safeness (reliability), and readability (closeness to NL).

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 5 / 24

The FL-NL Language Gap

Limits of Autocompletion for CNL Authoring

Autocompletion
Suggest the next possible words according to the grammar and
lexicon.

Limits
Responsiveness

I partial sentence at most steps
I hence no translation/interpretation in FL
I hence lack of feedback: e.g. query results

Flexibility
I in general, only adding words at the end
I sometimes, one word at a time
I restricted edition compared to text editors (cursor)

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 6 / 24

Principles of the N<A>F Design Pattern

Bridging the Gap with Zippers

The N<A>F design pattern for responsive and flexible CNL authoring.

Natural

Language

(NL)

Formal

Language

(FL)AST Zipper

Transformation

control suggestions

verbalization formalization

User Machine

focus

A kind of “suspended bridge”:
pillar Abstract Syntax Trees (AST) + Huet’s zippers for focus

suspender transformations of AST zippers
decks translations defined as Montague grammars

cables system suggestions and user control

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 7 / 24

Principles of the N<A>F Design Pattern

Pros and Cons
PROS

1 bridges the NL-FL gap because two-way synchronous translations
2 scales in expressivity because ambiguities are solved piecewise

during building
3 ensures strong safeness because fine-grained guidance during

building
4 is responsive because a complete sentence is defined at all steps
5 offers a lot of flexibility because building applies to a tree, not a

sequence of words, and focus as cursor
6 applies to various tasks because no assumption is made on the FL

CONS
1 does not apply to spontaneous NL or existing texts
2 has slower interaction because of the building process

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 8 / 24

Illustration on a Core RDF Query Language

Illustration on a Core RDF Query Language (CRQL)

To show a concrete application of the N<A>F design pattern
task: semantic search on RDF data
formal language: CRQL, a fragment of SPARQL
tree patterns, unions, negations
safeness criteria: avoid empty results

Bridge components:
1 ASTs
2 AST zippers for focus representation
3 AST zipper transformations for AST building
4 translation to SPARQL
5 translation to English
6 computation of suggestions

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 9 / 24

Illustration on a Core RDF Query Language

Illustration on a Core RDF Query Language (CRQL)

To show a concrete application of the N<A>F design pattern
task: semantic search on RDF data
formal language: CRQL, a fragment of SPARQL
tree patterns, unions, negations
safeness criteria: avoid empty results

Bridge components:
1 ASTs
2 AST zippers for focus representation
3 AST zipper transformations for AST building
4 translation to SPARQL
5 translation to English
6 computation of suggestions

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 9 / 24

Illustration on a Core RDF Query Language

1. CRQL ASTs

ASTs are close to NL syntax but much more abstract
sentences (s) denote queries
noun phrases (np) denote sets of entities
verb phrases (vp) denote conditions on entities
words are RDF classes, properties, and nodes

Select (s)

That (npex)

And (vp)

Has (vp)

Node (np)

“Science Fiction”

dbo:genre

Has (vp)

Node (np)

dbr:Steven_Spielberg

dbo:director

Some (np)

dbo:Film

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 10 / 24

Illustration on a Core RDF Query Language

1. ASTs Specification
ASTs are trees that can be specified with algebraic datatypes∗:

s := Select(np)

np := Node(node)
| DetThat(det , class, vp)
| And(np,np) | Or(np,np) | Not(np)

det := Some | Every | No

vp := IsA(class)
| Has(prop,np)
| IsOf(prop,np)
| True
| And(vp, vp) | Or(vp, vp) | Not(vp)

∗ source code online in ML style (OCaml)
(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 11 / 24

Illustration on a Core RDF Query Language

2. AST Zippers

Huet’s Zippers (functional pearl at J. Functional Prog., 1997)
type-safe representation of focus in complex data structures
efficient focus-centered edition of data structures (transformations)
open and close data structures like a jacket!
s′,np′, vp′ are datatypes for the contexts of s,np, vp
zipper = sub-tree under focus + context

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 12 / 24

Illustration on a Core RDF Query Language

2. AST Zippers
Huet’s Zippers (functional pearl at J. Functional Prog., 1997)

type-safe representation of focus in complex data structures
efficient focus-centered edition of data structures (transformations)
open and close data structures like a jacket!
s′,np′, vp′ are datatypes for the contexts of s,np, vp
zipper = sub-tree under focus + context

S (zipper)

Root (s′)Select (s)

DetThat (npex)

Has (vp)

Node (np)

dbr:Steven_Spielberg

dbo:director

dbo:FilmSome

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 12 / 24

Illustration on a Core RDF Query Language

2. AST Zippers
Huet’s Zippers (functional pearl at J. Functional Prog., 1997)

type-safe representation of focus in complex data structures
efficient focus-centered edition of data structures (transformations)
open and close data structures like a jacket!
s′,np′, vp′ are datatypes for the contexts of s,np, vp
zipper = sub-tree under focus + context

NP (zipper)

Select’ (np′)

Root (s′)

DetThat (npex)

Has (vp)

Node (np)

dbr:Steven_Spielberg

dbo:director

dbo:FilmSome

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 12 / 24

Illustration on a Core RDF Query Language

2. AST Zippers

Huet’s Zippers (functional pearl at J. Functional Prog., 1997)
type-safe representation of focus in complex data structures
efficient focus-centered edition of data structures (transformations)
open and close data structures like a jacket!
s′,np′, vp′ are datatypes for the contexts of s,np, vp
zipper = sub-tree under focus + context

VP (zipper)

DetThat’3

Select’ (np′)

Root (s′)

dbo:FilmSome

Has (vp)

Node (np)

dbr:Steven_Spielberg

dbo:director

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 12 / 24

Illustration on a Core RDF Query Language

2. AST Zippers
Huet’s Zippers (functional pearl at J. Functional Prog., 1997)

type-safe representation of focus in complex data structures
efficient focus-centered edition of data structures (transformations)
open and close data structures like a jacket!
s′,np′, vp′ are datatypes for the contexts of s,np, vp
zipper = sub-tree under focus + context

NP (zipper)

Has’2 (np′)

DetThat’3

Select’ (np′)

Root (s′)

dbo:FilmSome

dbo:director

Node (np)

dbr:Steven_Spielberg

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 12 / 24

Illustration on a Core RDF Query Language

3. AST Zipper Transformations (1/3)
A transformation goes from zipper to zipper, used as a building step

NODE(n):

NP

np′np →

NP

np’Node

n

CLASS(c):

VP

vp′True →

VP

vp′IsA

c
NP

np’DetThat

vpclassdet →

NP

np’DetThat

vpcdet

DET (d), PROP(p): insertions, similar to NODE and CLASS

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 13 / 24

Illustration on a Core RDF Query Language

3. AST Zipper Transformations (2/3)

AND:

X

x’x →

X

x ′And

x0x →

X

And’2

x’x

x0

(x0 = default x)
OR,NOT : algebraic operators, similar to AND
DOWN,UP,LEFT ,RIGHT : focus moves

Theorem
The set of transformations is CRQL-complete from initial zipper

NP

Select’

Root

DetThat

Trueowl:ThingSome

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 14 / 24

Illustration on a Core RDF Query Language

3. AST Zipper Transformations (3/3)

The above example AST is reached by the following sequence of
transformations:

1 CLASS(dbo:film): NP(DetThat(Some,dbo:Film,True), Select’(Root))

2 DOWN: VP(True, DetThat’3(Some,dbo:Film,Select’(Root)))

3 PROP(dbo:director): VP(Has(dbo:director,DetThat(Some,owl:Thing,True)),
DetThat’3(Some,dbo:Film,Select’(Root)))

4 DOWN: NP(DetThat(Some,owl:Thing,True), Has’2(dbo:director,
DetThat’3(Some,dbo:Film,Select’(Root)))

5 NODE(dbr:Steven_Spielberg): NP(Node(dbr:Steven_Spielberg),
Has’2(dbo:director, DetThat’3(Some,dbo:Film,Select’(Root))))

6 UP, UP, ...:
S(Select(DetThat(Some,dbo:Film,Has(dbo:director,Node(dbr:Steven_Spielberg)))),
Root)

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 15 / 24

Illustration on a Core RDF Query Language

4. Translation to SPARQL (Formalization)

R. Montague’s Grammar (“English as a formal language”, 1970)
designed for translation from NL to logic
compositional semantics based on lambda calculus
Montague grammar = grammar rules + lambda-terms

I here, AST datatypes play the role of grammars

Exerpt
vp := IsA(class) λx .(x + ’a’+ class)
vp := Not(vp1) λx .(’FILTER NOT EXISTS {’+ (vp1 x) + ’}’)

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 16 / 24

Illustration on a Core RDF Query Language

4. Full Montague Grammar for Formalization in
SPARQL

s := Select(np) ’SELECT ?x1... WHERE {’+ (np λx .(”)) + ’}’
np := Node(node) λd .((d node))

| DetThat(det , cl, vp) λd .(det cl λx .((d x) + ’.’+ (vp x)))
| And(np1, np2) λd .((np1 d) + ’.’+ (np2 d))
| Or(np1, np2) λd .(’{’+ (np1 d) + ’} UNION {’+ (np2 d) + ’}’)
| Not(np) λd .(’NOT {’+ (np d) + ’}’)

det := Some λd1.λd2.((d1 ’?xi’+ ’.’+ (d2 ’?xi’))
| No λd1.λd2.(’NOT {’+ (d1 ’?xi’+ ’.’+ (d2 ’?xi’) + ’}’)
| Every λd1.λd2.(’NOT {’+ (d1 ’?xi’+ ’. NOT{’+ (d2 ’?xi’) + ’}}’)

vp := IsA(class) λx .(x + ’a’+ class)
| Has(prop, np) λx .((np λy .(x + prop + y)))
| IsOf(prop, np) λx .((np λy .(y + prop + x)))
| True λx .(”)
| And(vp1, vp2) λx .((vp1 x) + ’.’+ (vp2 x))
| Or(vp1, vp2) λx .(’{’+ (vp1 x) + ’} UNION {’+ (vp2 x) + ’}’)
| Not(vp) λx .(’NOT {’+ (vp x) + ’}’)

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 17 / 24

Illustration on a Core RDF Query Language

5. Translation to English (Verbalization)
Montague grammars can also be used here

English as target language
compositional generation of NL phrases

I s sentences, np noun phrases
I vp relative clauses parametrized by negation (λn.)
I class, prop noun

linearization in Grammatical Framework

Excerpt
s := Select(np) ’Give me’+ np
np := DetThat(det , c, vp) det + c + (vp 0)
vp := IsA(class) λn.(’that’+ (is n) + ’a(n)’+ class)

| Has(prop,np) λn.(’whose’+ prop + (is n) + np)
| Not(vp) λn.(vp n)

is 0 = ’is’

is 1 = ’is not’

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 18 / 24

Illustration on a Core RDF Query Language

4 & 5.Translation Example

The example AST above has the following translations.

SPARQL
SELECT ?x1 WHERE
{ ?x1 a dbo:Film .
?x1 dbo:director dbr:Steven_Spielberg . }

English
Give me a film

whose director is Steven Spielberg

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 19 / 24

Illustration on a Core RDF Query Language

6. Computation of System Suggestions
No general technique for this component:

depends on the task
depends on the FL semantics
depends on the safeness criteria

For semantic search with CRQL, suggested insertion transformations
are computed from SPARQL results and from the focus entity x

nodes: values of x
classes: values of ?c s.t. { x a ?c }

properties: values of ?p s.t. { x ?p [] } or { [] ?p x }

Theorem
The suggestions prevent empty results (safeness), and yet are
complete w.r.t. non-empty CRQL queries (expressivity)
⇒ perfect adequacy to CRQL.

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 20 / 24

Illustration on a Core RDF Query Language

6. Computation of System Suggestions
No general technique for this component:

depends on the task
depends on the FL semantics
depends on the safeness criteria

For semantic search with CRQL, suggested insertion transformations
are computed from SPARQL results and from the focus entity x

nodes: values of x
classes: values of ?c s.t. { x a ?c }

properties: values of ?p s.t. { x ?p [] } or { [] ?p x }

Theorem
The suggestions prevent empty results (safeness), and yet are
complete w.r.t. non-empty CRQL queries (expressivity)
⇒ perfect adequacy to CRQL.

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 20 / 24

Application to 3 Semantic Web Tasks

Application to 3 Semantic Web Tasks

To show the effectiveness and genericity of the N<A>F design pattern
SPARKLIS SEWELIS/UTILIS PEW

task querying RDF
endpoints

authoring RDF
descriptions

completing OWL
ontologies

FL SPARQL RDF OWL
expres-
sivity

CRQL
+ cyclic patterns
+ OPTIONAL
+ ordering
+ expressions

conjunctive sub-
set of CRQL

CRQL
- non-atomic neg-
ations

safe-
ness

no empty results similarity to previ-
ous descriptions

no inconsistency

sugges-
tions

SPARQL eval. query relaxation satisfiability
checks

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 21 / 24

Application to 3 Semantic Web Tasks

Results from User Studies

SPARKLIS has 200-2000 hits per month since Spring 2014
SPARKLIS has been adopted by two French institutions
UTILIS’ fine-grained suggestions prefered to Protégé’s
UTILIS help to produce more consistent data
PEW better in quantity and quality than Protégé

I 56% vs 24% completion in formalization of hand anatomy
I more axioms produced with smaller error rate

Main difficulty: understand the focus, its impact on suggestions,
and the need to move it

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 22 / 24

Conclusion

Conclusion
The N<A>F design patter is

1 a powerful strategy to build bridges over the NL-FL gap
I users are never exposed to FL (readability)
I and machines are never exposed to NL
I users cannot fall in the gap (safeness)
I large subsets of FL are reachable by users (expressivity)

2 an interesting alternative to CNL Autocompletion
I formal interpretation (e.g. results) is available at all steps

(responsiveness)
I query elements can be inserted/deleted at any focus (flexibility)
I edition steps are more semantic

e.g. inserting a property means crossing a relation in the RDF
graph

3 an interesting alternative to Question Answering
I that avoids the hard problem of NL understanding
I that scales in expressivity in a modular way
I that applies to various tasks and FL

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 23 / 24

Conclusion

The End

Questions ?

(Sébastien Ferré) Responsive and Flexible CNL Authoring CNL’18 24 / 24

	The FL-NL Language Gap
	Principles of the N<A>F Design Pattern
	Illustration on a Core RDF Query Language
	Application to 3 Semantic Web Tasks
	Conclusion

