A Controlled Natural Language for Financial Services Compliance Checking\(^1\)

Shaun Azzopardi, Christian Colombo, Gordon J. Pace

Department of Computer Science, University of Malta

August 27, 2018

\(^1\)This research has received funding from the European Union’s Horizon 2020 research and innovation programme under grant number 666363.
Introduction

- Financial services exist under high scrutiny and regulation
- But ensuring compliance is difficult, and especially for developers with no previous experience in the field
Introduction

- Financial services exist under high scrutiny and regulation
- But ensuring compliance is difficult, and especially for developers with no previous experience in the field
- In financial software we can automate compliance (to an extent).
Introduction

- Financial services exist under high scrutiny and regulation
- But ensuring compliance is difficult, and especially for developers with no previous experience in the field

- In financial software we can automate compliance (to an extent).
- But there is a gap between code and regulation text.
Financial services exist under high scrutiny and regulation

But ensuring compliance is difficult, and especially for developers with no previous experience in the field.

In financial software we can automate compliance (to an extent).

But there is a gap between code and regulation text.

CNLs can bridge this gap, with appropriate semantics allowing generation of automated compliance checks.
Financial services exist under high scrutiny and regulation
But ensuring compliance is difficult, and especially for developers with no previous experience in the field

In financial software we can automate compliance (to an extent).
But there is a gap between code and regulation text.
CNLs can bridge this gap, with appropriate semantics allowing generation of automated compliance checks

We motivate and present the Financial Services Regulations Controlled Natural Language (FSRCNL) aimed at specifying regulations for the purpose of verifying that financial service applications satisfy them.
Introduction

- Financial services exist under high scrutiny and regulation.
- But ensuring compliance is difficult, and especially for developers with no previous experience in the field.

- In financial software we can automate compliance (to an extent).
- But there is a gap between code and regulation text.
- CNLs can bridge this gap, with appropriate semantics allowing generation of automated compliance checks.

- We motivate and present the Financial Services Regulations Controlled Natural Language (FSRCNL) aimed at specifying regulations for the purpose of verifying that financial service applications satisfy them.
- This was done in the context of the Open Payments Ecosystem (OPE), an ecosystem for financial services applications.
Outline

1. The Regulations
 1. Relevant and Verifiable Regulations
 2. Features of the Relevant and Verifiable Subset
 3. Annotation and Formalisation Process

2. The Language - FSRCNL
 1. Semantics
 2. Discussion - Design Choices

3. Conclusions
Not all clauses are relevant to our limited scope of the OPE:
Not all clauses are relevant to our limited scope of the OPE:

- **PSR Schedule 1 1(d)** [...] transaction where the funds are covered by a credit line for the payment service user [...]
Not all clauses are relevant to our limited scope of the OPE:

- **PSR Schedule 1 1(d)** [...] transaction where the funds are covered by a credit line for the payment service user[...]

Not all clauses can be automatically checked:
Not all clauses are relevant to our limited scope of the OPE:

- **PSR Schedule 1 1(d)** [...] transaction where the funds are covered by a credit line for the payment service user[...]

Not all clauses can be automatically checked:

- **PSR Schedule 4 40. (1)** A payment service provider must provide to the payment service user the information specified in Schedule 4[...]

Not all clauses are relevant to our limited scope of the OPE:

- **PSR Schedule 1 1(d) [...]** transaction where the funds are covered by a credit line for the payment service user[...]

Not all clauses can be automatically checked:

- **PSR Schedule 4 40. (1)** A payment service provider must provide to the payment service user the information specified in Schedule 4[...]

Then, we did not need to check for the whole regulations, but only for the relevant and verifiable clauses.
Relevant and Verifiable Regulations

<table>
<thead>
<tr>
<th>Regulation Title</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Electronic Money Regulations 2011 (SI 2011/99)</td>
<td>11</td>
</tr>
<tr>
<td>The Payment Services Regulations 2009 (SI 2009/209)</td>
<td>14</td>
</tr>
<tr>
<td>The Money Laundering Regulations 2009 (SI 2009/209)</td>
<td>4</td>
</tr>
<tr>
<td>Fourth Money Laundering Directive (EU) 2015/849</td>
<td>0</td>
</tr>
<tr>
<td>European Commissions Proposal for a Directive Amending MLD4</td>
<td>2</td>
</tr>
</tbody>
</table>
EMR2(1) electronic money means electronically (including magnetically) stored monetary value as represented by a claim on the electronic money issuer which

(a) is issued on receipt of funds for the purpose of making payment transactions;

[..]
EMR45 An electronic money issuer must not award:
(a) interest in respect of the holding of electronic money; or
(b) any other benefit related to the length of time during which an electronic money holder holds electronic money.
Relevant and Verifiable Examples: Monetary and Temporal Conditions

- **ML13(7)(d)(ii)** [. . .] if the device can be recharged, a **limit of 2,500 euro** is imposed on the total amount transacted in a calendar year, except when **an amount of 1,000 euro or more is redeemed in the same calendar year** by the bearer [. . .]
They specify what should (or should not) take place, depending on some constraint.

They put limits on some monetary transactions.

Other obligations can trigger given some time or monetary constraint.
Issue: Manually producing and maintaining three sets of specifications is intensive, and leaves much room for inconsistency.
Solution: Regulation Formalisation Process with CNL

Shaun Azzopardi, Christian Colombo, Gordon J. Pace (Department of Computer Science, University of Malta)

August 27, 2018 12 / 21
A controlled natural language (in English) geared towards specifying financial services regulations for compliance checking
Development driven by the OPE project.
A controlled natural language (in English) geared towards specifying financial services regulations for compliance checking

Development driven by the OPE project.

Constituents:

- **Variable declaration** (e.g. programme p, transaction t, or instrument i)
• A controlled natural language (in English) geared towards specifying financial services regulations for compliance checking
• Development driven by the OPE project.
• Constituents:
 • Variable declaration (e.g. programme p, transaction t, or instrument i)
 • Subject-Verb-Object phrases (e.g. i deals with e-money, i does not deal with e-money)
A controlled natural language (in English) geared towards specifying financial services regulations for compliance checking

Development driven by the OPE project.

Constituents:

- **Variable declaration** (e.g. programme p, transaction t, or instrument i)
- **Subject-Verb-Object phrases** (e.g. i deals with e-money, i does not deal with e-money)
- **Guarded declaration** (e.g. service provider sp, and programme p, where sp deploys p in the UK)
A controlled natural language (in English) geared towards specifying financial services regulations for compliance checking

Development driven by the OPE project.

Constituents:

- **Variable declaration** (e.g. programme \(p \), transaction \(t \), or instrument \(i \))
- **Subject-Verb-Object phrases** (e.g. \(i \) deals with e-money, \(i \) does not deal with e-money)
- **Guarded declaration** (e.g. service provider \(sp \), and programme \(p \), where \(sp \) deploys \(p \) in the UK)
- **Monetary expressions** (e.g. \(t \) deals with less than 500 EUR)
A controlled natural language (in English) geared towards specifying financial services regulations for compliance checking

Development driven by the OPE project.

Constituents:

- **Variable declaration** (e.g. programme p, transaction t, or instrument i)
- **Subject-Verb-Object phrases** (e.g. i deals with e-money, i does not deal with e-money)
- **Guarded declaration** (e.g. service provider sp, and programme p, where sp deploys p in the UK)
- **Monetary expressions** (e.g. t deals with less than 500 EUR)
- **Temporal and Country qualifiers** (e.g. i expired less than 12 months ago, or p is regulated in the UK)
A controlled natural language (in English) geared towards specifying financial services regulations for compliance checking.

Development driven by the OPE project.

Constituents:

- **Variable declaration** (e.g. programme p, transaction t, or instrument i)
- **Subject-Verb-Object phrases** (e.g. i deals with e-money, i does not deal with e-money)
- **Guarded declaration** (e.g. service provider sp, and programme p, where sp deploys p in the UK)
- **Monetary expressions** (e.g. t deals with less than 500 EUR)
- **Temporal and Country qualifiers** (e.g. i expired less than 12 months ago, or p is regulated in the UK)
- **Full Sentence**: For each \langlevariable-declarations\rangle, where \langleguards\rangle, then \langlecompound-sentence\rangle.
ML13(7)(d)(ii) [. . .] if the device can be recharged, a limit of 2,500 euro is imposed on the total amount transacted in a calendar year [. . .]

For each instrument i, where i is regulated in the UK and i is rechargeable, then the amount redeemed from i within a calendar year is exactly or less than 2500 EUR.
EMR45 An electronic money issuer must not award
(a) interest in respect of the holding of electronic money; or
(b) any other benefit related to the length of time during which an
electronic money holder holds electronic money.

For each programme p, and instrument i, where i is an instrument
of p, p is regulated in the UK, and i deals with e-money, then i
does not give time-based rewards.
FSRCNL sentences can be transformed into a predicate language:

- For each programme p, and instrument i, where i is an instrument of p, p is regulated in the UK, and i deals with e-money, then i does not give time-based rewards.

$$\forall p \in \text{programmes}, i \in \text{instruments}(p) \cdot \text{regulatedIn}(p, \text{UK}) \land \text{emoney}(i) \implies \text{noTimeRewards}(i)$$
FSRCNL sentences can be transformed into a predicate language:

- For each programme \(p \), and instrument \(i \), where \(i \) is an instrument of \(p \), \(p \) is regulated in the UK, and \(i \) deals with e-money, then \(i \) does not give time-based rewards.

\[
\forall p \in \text{programmes}, \; i \in \text{instruments}(p) \cdot \text{regulatedIn}(p, UK) \land \text{emoney}(i) \implies \text{noTimeRewards}(i)
\]

- Language constructs (that represent predicates) can be linked to constructs in a payment application.
Open Payments Ecosystem (OPE) - An ecosystem acting as a backend for financial services, to be used by payment applications

Developers provide
- **code** for payment application, and a
- **model** of the promised runtime behaviour (e.g. promising that only transactions between users in the UK will be allowed by the application)

FSRCNL types and verbs are linked either to the model, or to the code.
OPE Business Process with Compliance

Pre-deployment
- Developer
- Promised Model
 - input
 - rejects
 - accepts
- Approved Model
 - enforced
 - used
- Valour
 - Valour Script
 - Dynamic Regulations Monitor
 - Transaction Engine
 - events

Post-deployment
- FSRCNL Specifications
 - FSRCNL Parser
- Buy Script
Discussion

- We implemented a FSRCNL parser using Haskell’s *parsec* library.
We implemented a FSRCNL parser using Haskell’s *parsec* library.

We use *parsec* to produce generic compliance checks (in Java) that can be connected to a system with an appropriate adaptor class.
We implemented a FSRCNL parser using Haskell’s `parsec` library.

We use `parsec` to produce generic compliance checks (in Java) that can be connected to a system with an appropriate adaptor class.

This work unfortunately lacks an extensive evaluation (due to project constraints), but briefly:

- Developers found the FSRCNL regulations more straightforward
- All identified regulations were able to be specified using FSRCNL.
We implemented a FSRCNL parser using Haskell’s `parsec` library. We use `parsec` to produce generic compliance checks (in Java) that can be connected to a system with an appropriate adaptor class.

This work unfortunately lacks an extensive evaluation (due to project constraints), but briefly:

- Developers found the FSRCNL regulations more straightforward.
- All identified regulations were able to be specified using FSRCNL.

FSRCNL was developed with two regulations (e-money and payment services) and tested for suitability with the money laundering regulations.

- Only the addition of new verbs was needed.
We implemented a FSRCNL parser using Haskell’s *parsec* library.

We use *parsec* to produce generic compliance checks (in Java) that can be connected to a system with an appropriate adaptor class.

This work unfortunately lacks an extensive evaluation (due to project constraints), but briefly:

- Developers found the FSRCNL regulations more straightforward
- All identified regulations were able to be specified using FSRCNL.

FSRCNL was developed with two regulations (e-money and payment services) and tested for suitability with the money laundering regulations.

- Only the addition of new verbs was needed.

Outstanding question: How easy is it for lawyers to write these specifications?
We tried to use the same terms as used in regulations, rather than those used by the developers in the OPE.
Discussion

- We tried to use the same terms as used in regulations, rather than those used by the developers in the OPE.

- Variable declarations are unnatural, but we use them to remove the ambiguity of anaphora.
Discussion

- We tried to use the same terms as used in regulations, rather than those used by the developers in the OPE.
- Variable declarations are unnatural, but we use them to remove the ambiguity of anaphora.
- Some concepts in the law where ambiguous,
 - e.g. **EMR 39(a) issuing of e-money should be done without delay**
 - For the OPE we decided on checking for an approximate amount of needed processing time, after which there is a delay.
Discussion

- We tried to use the same terms as used in regulations, rather than those used by the developers in the OPE.
- Variable declarations are unnatural, but we use them to remove the ambiguity of anaphora.
- Some concepts in the law where ambiguous,
 - e.g. **EMR 39(a)** *issuing of e-money should be done without delay*
 - For the OPE we decided on checking for an approximate amount of needed processing time, after which there is a delay.
- **PENS Classification**
 - P^4: Not maximally precise since the semantics depend on the underlying system.
 - E^3: We do not include second-order universal quantification.
 - N^3: Variable declarations and lack of flow between different regulations cause some unnaturality.
 - S^4: We have documented FSRCNL in less than 10 pages.
Conclusions

- We have described the analysis of regulations for the purpose of verification.
- We presented a CNL, FSRCNL, for the specification of financial services regulations, that includes monetary and temporal expressions and financial services specific constructs.
- We showed how this CNL is integral to the compliance process of a payment applications’ ecosystem, the OPE.
- As far as semantics is concerned, FSRCNL seamlessly incorporates two sub-languages: (i) a language translated to pre-deployment checks on a model provided by the developer; and (ii) a language translated to runtime monitors on the code.